Long Proofs of (Seemingly) Simple Formulas

نویسندگان

  • Mladen Miksa
  • Jakob Nordström
چکیده

In 2010, Spence and Van Gelder presented a family of CNF formulas based on combinatorial block designs. They showed empirically that this construction yielded small instances that were orders of magnitude harder for state-of-the-art SAT solvers than other benchmarks of comparable size, but left open the problem of proving theoretical lower bounds. We establish that these formulas are exponentially hard for resolution and even for polynomial calculus, which extends resolution with algebraic reasoning. We also present updated experimental data showing that these formulas are indeed still hard for current CDCL solvers, provided that these solvers do not also reason in terms of cardinality constraints (in which case the formulas can become very easy). Somewhat intriguingly, however, the very hardest instances in practice seem to arise from so-called fixed bandwidth matrices, which are provably easy for resolution and are also simple in practice if the solver is given a hint about the right branching order to use. This would seem to suggest that CDCL with current heuristics does not always search efficiently for short resolution proofs, despite the theoretical results of [Pipatsrisawat and Darwiche 2011] and [Atserias, Fichte, and Thurley 2011].

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Little Blocked Literal Goes a Long Way

Q-resolution is a generalization of propositional resolution that provides the theoretical foundation for search-based solvers of quantified Boolean formulas (QBFs). Recently, it has been shown that an extension of Q-resolution, called long-distance resolution, is remarkably powerful both in theory and in practice. However, it was unknown how long-distance resolution is related to QRAT, a proof...

متن کامل

Narrow Proofs May Be Maximally Long (Extended Abstract)

We prove that there are 3-CNF formulas over n variables that can be refuted in resolution in width w but require resolution proofs of size n. This shows that the simple counting argument that any formula refutable in width w must have a proof in size n is essentially tight. Moreover, our lower bounds can be generalized to polynomial calculus resolution (PCR) and Sherali-Adams, implying that the...

متن کامل

Algebraic Proofs over Noncommutative Formulas

We study possible formulations of algebraic propositional proof systems operating with noncommutative formulas. We observe that a simple formulation gives rise to systems at least as strong as Frege, yielding a semantic way to define a Cook-Reckhow (i.e., polynomially verifiable) algebraic analog of Frege proofs, different from that given in Buss et al. (1997) and Grigoriev & Hirsch (2003). We ...

متن کامل

Exact Euler Maclaurin Formulas for Simple Lattice Polytopes

Euler Maclaurin formulas for a polytope express the sum of the values of a function over the lattice points in the polytope in terms of integrals of the function and its derivatives over faces of the polytope or its dilations. There are two kinds of Euler Maclaurin formulas: exact formulas, which apply to exponential or polynomial functions, and formulas with remainder, which apply to arbitrary...

متن کامل

Localization and Conjectures from String Duality

We describe the applications of localization methods, in particular the functorial localization formula, in the proofs of several conjectures from string theory. Functorial localization formula pushes the computations on complicated moduli spaces to simple moduli spaces. It is a key technique in the proof of the general mirror formulas, the proof of the Hori-Vafa formulas for explicit expressio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014